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The non-local dispersion tensor provides a fundamental description of velocity correlations and displace-
ment information in a pre-asymptotic dispersive system. Here we describe in detail how PGSE NMR may
be used to measure this tensor, outlining the pulse sequences needed for signal superposition, as well as
the data analysis procedures. The sequence is inherently two-dimensional, the first dimension giving the
displacement resolution, the second giving correlation information. The technique is verified against sim-
ulated echo attenuation data from a lattice-Boltzmann simulation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The application of NMR methods to the study of fluids in porous
media is now well-established. These methods include relaxation
time measurement, diffusion measurement and measurement of
local inhomogeneous magnetic fields. The development of new
methods for understanding fluid dynamics in porous materials is
important because of the wide range of applications in which such
materials play a role, for example chromatography, filtration, oil
recovery, catalysis, environmental waste management, groundwa-
ter flows, geothermal venting and processes relevant to animal and
plant physiology. In all these applications one of the most impor-
tant underlying physical phenomena is that of fluid dispersion,
the process whereby molecules that start together in the same
vicinity become separated as a result of translational motions. In
this paper we provide details regarding a new experimental tool
for the measurement of dispersion physics from a novel stand-
point, that of the ‘‘non-local dispersion tensor”, whereby spatio-
temporal correlations in the flow field are revealed.

Of course molecular separation, and hence dispersion, occurs in
thermal equilibrium, and in the absence of fluid flow, by Brownian
motion alone. In a porous medium, the presence of fluid/matrix
interfaces impedes the Brownian motion so that apparent diffusion
rates depend on the length and time scales used in making the
measurement. But in the presence of flow, the dispersion of mole-
cules speeds up as other mechanisms for separating initially adja-
cent molecules take over and the rate of dispersion rises
significantly above the diffusion ‘‘baseline”. These include mechan-
ll rights reserved.

llaghan).
ical dispersion due to stochastic variations in velocity induced by
advection along tortuous paths and flow bifurcations, diffusive
(Taylor) dispersion arising from molecular diffusion across stream-
lines and holdup dispersion which arises from the presence of dead
end pores. Like diffusion, dispersion involves stochastic processes
that necessitate the language of statistical physics.

A complete description of fluid behaviour is given by a knowl-
edge of the time-dependent Eulerian flow field, in other words,
the velocity vðr; tÞ, at all points in space and time. In principle, gi-
ven infinite spatial and temporal resolution, MRI is capable of
revealing this field. However, time and spatial resolution are finite
and indeed traded off in MRI. By contrast, Pulsed Gradient Spin
Echo (PGSE) NMR techniques which obtain an ensemble average
signal from an entire sample, are ideally suited to measuring trans-
port properties in porous media. While molecular positions are not
measured in PGSE NMR, their displacements over well-defined
time scales are determined. The advantage of trading away spatial
localisation in such ensemble averaging is a significant gain in the
available displacement length scales and time scales over which
the motion may be probed.

The application of spin-echo methods to the study of flow has a
long history, dating back to the original suggestion by Hahn [1],
and by Carr and Purcell [2] that, in the presence of magnetic field
gradients, the spin echo would be flow sensitive. In 1972, Hayward
et al. [3] carried out pioneering work in the use of ensemble-aver-
aged Pulsed Gradient Spin Echo NMR to study laminar flow in a
pipe. was carried out by. In 1996 Lebon et al. [4] used PGSE NMR
methods to measure the displacements of molecules in the sto-
chastic flow as fluid was forced through a random porous medium
and in 1997, Seymour and Callaghan [5] carried out an extensive
PGSE NMR investigation of timescale dependence of dispersion.

http://dx.doi.org/10.1016/j.jmr.2010.01.006
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Much prior PGSE NMR work has focused on attempts to mea-
sure ‘‘asymptotic dispersion”, the behaviour which applies when
molecules in the flow field have moved sufficiently to sample a
representative elementary volume (REV) of the locally heteroge-
neous porous medium, i.e., the smallest volume containing all mor-
phological features which exist in the porous medium with their
global statistical weighting [6]. Seymour and Callaghan made com-
parisons, with literature data from other methods, of flow-rate
dependence of non-dimensionalized, asymptotic dispersion coeffi-
cients, measured transverse and longitudinal to the flow direction,
while subsequent studies by other groups [7–9] extended this
work.

In recent years attention has focused on flow field fluctuations
that precede asymptotic dispersion. A fundamental correlation
time defining the temporal structure of the velocity field is, sv ,
the duration of flow around a characteristic length scale. In general,
for a medium with pore size or pore spacing given by size d, this
correlation time may be written

sv ¼
d
hvi ð1Þ

where, for a pore space fraction (porosity) /; hvi ¼ v tube=/;v tube

being the mean velocity deduced from the volume flow rate assum-
ing that the flow area is the total cross section of the pipe. Another
characteristic time, sD, is the time for molecules to diffuse across a
pore. Using a variant of the PGSE method which allowed for inde-
pendent dispersion encoding at two separated time intervals, Khra-
pitchev and Callaghan [10,11] made measurements of the velocity
autocorrelation function, over a range of Peclet numbers, thus pro-
viding an experimental determination of sv . In 2007, Hunter and
Callaghan [12] extended this Double PGSE method so as to measure
the non-local dispersion tensor [13], thus obtaining the spatio-tem-
poral structure of dispersive flow while at the same time preserving
information regarding different directional components. The pres-
ent paper presents practical details of the PGSE NMR technique
used for the measurement of the non-local dispersion tensor, a
quantity recognised as being of fundamental importance in the
NMR characterisation of fluid dispersion [5,9,10,14–21].

In what follows we describe the non-local dispersion tensor and
provide a detailed description the NMR method used for its mea-
surement including the signal superposition method, as well as
the data analysis procedures. We demonstrate the method experi-
mentally for dispersive, low Reynolds number ðReÞ, flow in a ran-
dom bead pack of mono-sized spheres. In order to test our NMR
method independently, we have carried out a lattice-Boltzmann
simulation of the flow field through an independently generated
beadpack. This flow field is used to simulate dispersion by allowing
virtual tracer particles to flow and diffuse through the pore space.
These tracers can then be used to estimate the non-local dispersion
tensor in the simulated flow. The same code can also be used to
simulate the NMR experiment, thus providing a means of compar-
ing the tensor that results from the NMR data analysis protocol
with that obtained from the tracer particle analysis.

2. The non-local dispersion tensor

To explain the non-local dispersion tensor, it is helpful to begin
by defining a steady state Eulerian flow field vEðr; tÞ ¼ vEðrÞ and a
stationary Lagrangian flow ensemble vLðtÞwith mean flow hvi. The
fluctuating (zero mean) parts of the velocities, uEðrÞ and uLðtÞ are
thus defined by

vEðrÞ ¼ uEðrÞ þ hvi ð2Þ

and

vLðtÞ ¼ uLðtÞ þ hvi ð3Þ
The asymptotic dispersion tensor, D�, is described in terms of the
velocity autocorrelation function (VACF) of the Lagrangian veloci-
ties by [13,22]

D� ¼ lim
t!1

sym
Z t

0
dshuLð0ÞuLðsÞi ð4Þ

where h� � �i represents the Lagrangian ensemble average. Note that
D� may also be defined in Einsteinian terms involving the dyadic of
mean square displacements, r2ðtÞ by [22]

D� ¼ lim
t!1

1
2

dr2

dt
ð5Þ

While the VACF is naturally describes in terms of the Lagrangian
ensemble of velocities, it can be easily linked with the Eulerian field
via a propagator Pðrjr0; sÞ which describes the conditional probabil-
ity that a fluid element initially at r will migrate to r0 at a later time
s. Pðrjr0; sÞ is governed by the microscale advection–diffusion equa-
tion for the system. For any given starting probability Pðr;0Þ, the
velocity autocorrelation function can then be written

huLð0ÞuLðsÞi ¼
Z

dr0
Z

druEðr; 0ÞPðr; 0ÞPðrjr0; sÞuEðr0; sÞ ð6Þ

The integral over time in Eq. (4) means that details of the VACF tem-
poral correlations are buried in the asymptotic dispersion tensor.
Similarly, the integral

R
druEðr;0ÞPðrÞPðrjr0; sÞuEðr0; sÞ contains spa-

tial correlation information buried in the VACF. This is known as
the non-local dispersion tensor [13] and is a primary quantity of
interest in any detailed description of dispersive flow. We may con-
veniently rewrite this quantity in terms of relative displacements in
time and space we may define the non-local dispersion tensor, the
VACF, and the asymptotic dispersion by

DNLðR; sÞ ¼
Z

druEðr; 0ÞPðrÞPðrjrþ R; sÞuEðrþ R; sÞ ð7Þ

and

huLð0ÞuLðsÞi ¼
Z

dRDNLðR; sÞ ð8Þ

and

D� ¼ lim
t!1

sym
Z t

0
ds
Z

dRDNLðR; sÞ ð9Þ

We have shown [12] that the tensor DNLðR; sÞ can be directly mea-
sured using PGSE NMR. The key to this measurement is to not only
encode the NMR signal with information concerning the displace-
ment propagator, but to ensure that the experiment is also sensitive
to velocities separated in space and time. The details of our ap-
proach are as follows.

3. NMR implementation

3.1. The pulse sequence

We begin with the pulse sequences shown in Fig. 1. Each is two-
dimensional in encoding gradient, and the signal superposition
resulting from this pair enable extraction of the components of
the non-local dispersion tensor. The first sequence shown in
Fig. 1(a) is termed ‘‘compensated” since mean flow effects are nul-
led in the double-PGSE dimension, while that shown in 1(b) is
uncompensated resulting in a net phase shift due to mean flow.
Note that as shown, with unique phases for the RF pulses, each
of these sequences contain a superposition of compensated and
uncompensated phase terms arising from the flow. In order to
ensure that pure compensated and uncompensated phase shifts
result, an appropriate RF phase cycle is required.



a

b

Fig. 1. The ‘compensated’ (a) and ‘uncompensated’ (b) versions of the pulse
sequence. A superposition is required when post-processing the signal.
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Note that the encoding dimensions, qD and qu relate, respec-
tively, to the dynamic displacement R and the local velocity v.
The data analysis and pulse implementation for each dimension
is different. Analysis in the displacement dimension requires the
displacement encoding to be in the propagator sense, so that full
attenuation is achieved and the propagator information can be
recovered via a Fourier transform. This encoding is implemented
using a Bi-Polar PGSE [23] with each pulse having a strength g
and a duration of d. By contrast, in order to get the necessary veloc-
ity encoding in the second dimension, the experiments must be
performed and analysed in the low-q limit, as previously used in
measurements of the VACF using double-PGSE experiments [10].
Each pair of gradients, with a strength of gu and duration of d are
separated by a time Du. Note that our definition of q will be differ-
ent for the two dimensions: in the displacement dimension
qD ¼ ð2pÞ�1c2dg such that q is the Fourier conjugate of displace-
ment, and in the velocity encoding dimension qu is the phase
conjugate of velocity such that qu ¼ cdDugu where c is the mag-
netogyric ratio. The two dimensions of gradient pulses are gener-
ally implemented concurrently with the same pulse duration, d,
such that when the displacement and velocity encoding directions
are the same, the gradient pulses superpose.

The time s which denotes the separation of the double PGSE
pulses represents a ‘mixing-time’ in the NMR sense. This time pro-
vides the temporal dimension for fluctuations in the velocities,
essentially the timescale for velocity correlation. Of course, while
our pulse sequence is a double PGSE with regards to velocity encod-
ing, in a displacement sense, it is set up as a single PGSE encoding,
and we will refer to s as an ‘encoding-time’ in that context.

3.2. The NMR signal

The normalised signal acquired at the final spin echo from the
sequence shown in Fig. 1a may be written

EðqD;quÞ ¼
Z Z

expði2pqD � RÞ expð�iqu � ðuEðr; 0Þ þ hviÞÞ

� PðrÞPðrjrþ R; sÞ expðiqu � ðuEðrþ R; sÞ þ hviÞÞdRdr
ð10Þ

taking the inverse Fourier transform in the qD dimension, F�1
qD

. . .f g,
gives us an expression we call S, a function of R and qu,

SðR;quÞ ¼F�1
qD

EðqD;quÞf g ¼
Z

expð�iqu � uEðr; 0ÞÞPðrÞPðrjrþ R; sÞ

� expðiqu � uEðrþ R; sÞÞdr
ð11Þ

Note that the integral over starting position
R

. . . dr can be also be
represented by an ensemble average notation h. . .i. The displace-
ment information is implied through the average propagator
PðR; sÞ so that S becomes

SðR;quÞ ¼ expð�iqu � uEð0ÞÞPðR; sÞ expðiqu � uEðsÞÞ
� �

ð12Þ

Using this ensemble average notation we can write the non-local
dispersion tensor compactly as

DNLðR; sÞ ¼ uEð0ÞPðR; sÞuEðsÞ
� �

ð13Þ

Henceforth the subscripts denoting Eulerian velocities will be omit-
ted and compact notation of equation in Eq. (13) employed. How-
ever the strict definitions are as given in Eqs. (7) and (11).

3.3. The low-q limit

In the analysis of our echo attenuation data, the Fourier trans-
formation with respect to qD represents the first step, so that sub-
sequent analysis is performed on SðR;quÞ. To obtain the desired
expression for DNL we need to expand the echo attenuation, in
the qu dimension, in the low-q limit. Taking, for example, the direc-
tion of displacement encoding and velocity encoding to be both in
the Z direction (also chosen as the direction of the tube velocity),
we get for the first version of the pulse sequence in which the
phase shift due to the bulk flow is compensated,

ScompðZ; quÞ ¼ 1� iquuzð0Þ � q2
u

uzð0Þ2

2
þ iOðq3

uÞ þ Oðq4
uÞ

 !
PðZ; sÞ

*

� 1þ iquuzðsÞ � q2
u

uzðsÞ2

2
� iOðq3

uÞ þ Oðq4
uÞ

 !+

where qu represents the magnitude of a qu vector applied along the
z-axis.

Expanding in qu we have

ScompðZ; quÞ ¼ PðZ; sÞ þ iqu uzð0ÞPðZ; sÞ
� �

� q2
u

2
uzð0Þ2PðZ; sÞ
D E

� iqu PðZ; sÞuzðsÞ
� �

� q2
u uzð0ÞPðZ; sÞuðsÞ
� �

� q2
u

2
PðZ; sÞuzðsÞ2
D E

þ iOðq3
uÞ þ Oðq4

uÞ ð14Þ

Because the real and imaginary parts of the data are independently
handled, it is necessary to account separately for the truncation
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errors in q3
u and q4

u. The tensor elements which we seek are present
as partial coefficients of q2

u. Note that the velocities in the correla-
tion term in Eq. (12) are denoted as being separated in time by s be-
cause of the experimental encoding for the propagator. For terms
involving velocity, but without correlation at separated times, the
apparent time dependence of uz may be dropped.

The second version of the pulse sequence is termed uncompen-
sated. It is performed with the sign of the second velocity encoding
pulse reversed as shown in Fig. 1b, and yields

SuncompðZ; quÞ ¼ exp i2qu vzh ið Þ
�

PðZ; sÞ þ iqu uzPðZ; sÞ
� �

� q2
u

2
u2

z PðZ; sÞ
� �

þ iqu PðZ; sÞuz
� �

þ q2
u uzð0ÞPðZ; sÞuzðsÞ
� �

� q2
u

2
PðZ; sÞu2

z

� �
þiOðq3

uÞ þ Oðq4
uÞ
�

ð15Þ

Because of the lack of compensation for mean flow, an extra phase
factor, expði2quhvziÞ is present at the beginning of the expression.
This factor is easily determined by examining the data Eð0; quÞ
and can be retrospectively corrected. With this correction and with
a difference superposition we have

ScompðZ; quÞ � expð�i2qu vzh iÞSuncompðZ; quzÞ
¼ i2qu PðZ; sÞuz

� �
þ 2q2

u uzð0ÞPðZ; sÞuzðsÞ
� �

þ iOðq3
uÞ þ Oðq4

uÞ
ð16Þ

Thus the elements of the non-local dispersion tensor may be ob-
tained from this superposition by fitting the real part to the q2

u

dependence in the low-q limit.

3.4. Extracting DNL

Other elements of the non-local tensor may be obtained by dif-
ferent choices for the directions of qD and qu Note that the choices
of directions for the initial and final velocity encoding need not be
coincident. Eq. (16) can be generalised using the dimension sub-
scripts a and b for the initial and final velocity, and c, for the direc-
tion of the displacement, denoted X with the appropriate subscript.
The non-local dispersion tensor, written in this subscript form is

DNL
abðXc; sÞ ¼ uað0ÞPðXc; sÞubðsÞ

� �
ð17Þ

Omitting the truncation errors, a general form for the superposition
is

expðiqua vah i � iqub vb

� �
ÞScompðXc; qua;bÞ� expðiqua vah i

þ iqub vb

� �
ÞSuncompðXc; qua;bÞ

¼ iqua uaPðXc; sÞ
� �

þ iqub PðXc; sÞuc
� �

þ 2quaqub uað0ÞPðXc; sÞubðsÞ
� �

ð18Þ

where qua;b means the first pair of velocity encoding gradients are
along a and the second along b.

In cases where the velocity encoding is in a direction that has no
bulk flow, no phase correction is necessary whereas, if the initial
and final motion encodings are orthogonal and only one is compo-
nent is parallel to the direction of the main flow, z, the phase cor-
rection factor is expð�iquhviÞ and appears in both ScompðXc; qua;zÞ
and SuncompðXc; qua;zÞ. Despite the fact the neither pulse sequence
is uncompensated or compensated, the oppositely signed qu

encodings still provide the appropriate superposition. If the phase
correction is omitted, the resulting superposition will give tensors
not in u, but in v.

Eq. (18) contains terms linear in qu. In handling these, two
experimental strategies are possible. In the first a further superpo-
sition using ScompðXc;�qua;bÞ and SuncompðXc;�qua;bÞ is performed to
eliminate the q term. In the second the real and the imaginary parts
of the data can be treated separately thus allowing the additional
extraction of the two ensemble averages huaPðXcÞi and hubPðXcÞi.

The three choices of directions available for the three different
encodings give a total of 27 terms. There are six, non-zero, inde-
pendent terms for flow in a porous medium.

4. Experimental method

PGSE NMR experiments were performed using a Bruker
AVANCE 400 MHz spectrometer equipped with a microimaging
gradient set capable of providing 1:45 T m�1. A bead pack column
consisting of randomly packed 500 lm latex monodisperse
spheres was contained in a poly(ether ether ketone) (PEEK) cylin-
der of inner diameter 10 mm and distilled, degassed water was
pumped (BVP-Z Ismatec) through. The beadpack was contained
by plugs of porous plastic, outside the sensitive region of the rf coil
(a ‘birdcage’ resonator with a diameter of 15 mm), to a length of
50 mm. The porosity of the beadpack was measured from a T2

compensated one-dimensional image of a partially filled beadpack.
The porosity was found to be ð37:5� 0:5Þ%.

In order to dampen out high-frequency pulsations from the
pump, a length of rubber tubing was used in series with the other-
wise teflon tubing. This is an essential part of the experiment since
the sensitive velocity encoding that make up the double PGSE com-
ponent are performed over 2–3 ms, and separated by 10 s of ms.
The total experiment time take several hours, hence the need to
a stable flow over a wide range of time scales. Any remaining varia-
tion in the flow was not detrimental to the signal quality. The liquid
was pumped at a tube velocity of around 10:2 mm s�1, giving a sv of
49.0 ms, a Peclet number of approximately 1500 and a Reynolds
number of approximately 3.3. Experiments reported here are per-
formed at displacement encoding times of 10 ms, 21.5 ms and
46.3 ms. The spacing, Du, between each double-PGSE pair was
2 ms, ensuring Du � sv . To reduce the delay between scans, caused
by the need to allow for near-complete T1 relaxation, the water was
doped by 0.025 wt% with GdCl3 to give a T1 of approximately 110 ms.

4.1. Pulse sequence

The use of a BP-PGSE encoding for the displacement is not
strictly necessary since the expected internal gradients for our
bead pack are small. However, the low attenuation due the motion
encoding pulses was more reliable when the pulses were separated
by at p pulse and so the displacement encoding pulses were simi-
larly implemented.

Typically in a BP-PGSE experiment, unwanted phase coherences
due to the p pulses can be minimised by using small crusher gra-
dients either side of the rf pulse. These crusher gradients would
normally be in a direction orthogonal to the main encoding. It is
usually assumed that any attenuation caused by these gradients
are small compared to the effects being measured. However in this
case we do not have this freedom as it is precisely the small effects
we are expecting to measure with the low-q motion encoding
pulse. To this end we need a comprehensive 32-step phase cycle
to minimise the unwanted coherence. The complete phase cycle
is given in Table 1.

Note that the phase cycle performs two separate tasks. First, it
removes baseline artifacts and the unwanted FIDs generate by all
RF pulses other that the first p

2 excitation pulse. Second, it ensures
that the appropriate superposition of orthogonal transverse plane
magnetisation components are stored, so as to produce the desired
pure phase shift term after recall following the storage period.

The signal averaging that accompanies the 32 steps in the phase
cycle is advantageous when fitting in the low-q dimension, and



Table 1
The 32-step phase cycle for the pulse sequence depicted in Fig. 1. This phase cycle minimises unwanted coherences without the need for crusher gradients around the p pulses
and also ensures pure phase-encoded terms after recall following the storage period.

Excitation xxxx xxxx xxxx xxxx �x�x�x�x �x�x�x�x �x�x�x�x �x�x�x�x
p yyyy �y�y�y�y yyyy �y�y�y�y yyyy �y�y�y�y yyyy �y�y�y�y
Storage x�xy�y x�xy�y x�xy�y x�xy�y �xx�yy �xx�yy �xx�yy �xx�yy
Recall x�xy�y x�xy�y �xx�yy �xx�yy x�xy�y x�xy�y �xx�yy �xx�yy
p y�y�xx y�y�xx y�y�xx y�y�xx y�y�xx y�y�xx y�y�xx y�y�xx

Receiver xx�x�x xx�x�x �x�xxx �x�xxx �x�xxx �x�xxx xx�x�x xx�x�x

a

b

Fig. 3. The measured and interpolated data around qD ¼ 0 for the encoding
described in Fig. 2. The yellow crosses show measured data and the black dots show
the interpolated data. The gray line acts as a guide for the eye. The fine structure is
resolved both in the phase and the magnitude. (For interpretation of color
mentioned in this figure the reader is referred to the web version of the article.)
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gives the opportunity for improved displacement resolution in the
propagator. For some encoding times there is still a small amount
of unwanted signal when qu ¼ qD ¼ 0. This results in at offset at
qu ¼ 0 in SðXc; quÞ. The low-q fit algorithm can easily ignore this
point.

4.1.1. Displacement encoding
The acquisition in the displacement dimension is performed

using a grained approach [24], typically in three stages. This en-
abled sharp resolution of any stagnant or slow moving peak while
still capturing the faster moving particles. If the encoding was in
the longitudinal direction the displacement encoding was per-
formed using 22 fine, 14 medium and 26 course increments be-
tween equal positive and negative gradients giving a total of 63
gradient values. The step ratios were 1:2:8 giving an interpolated
data set with 259 values, the first 258 were used for the discrete
Fourier transform. Fig. 2 shows the measured and interpolated qD

data for an experiment with displacement encoding direction, Z,
parallel to the main flow. With the exception of Figs. 8 and 10 all
the examples shown here will be from the same pair of experi-
ments, that which is needed for extracting DNL

zz ðZ; sÞ for
s ¼ 46:3 ms. For transverse encoding only a two stage graining
was required 14 medium and 26 course increments giving a total
of 41 steps. The step ratios were 1:4 giving an interpolated data
set with 119 values. Fig. 3(a) and (b) show that all the fine struc-
ture of the echo attenuation is resolved, this is also true when
the echo attenuation is expanded into the qu dimension.

The interpolation was performed using in logarithmic space for
the magnitude of the echo attenuation and a linear interpolation
for the phase of the echo attenuation, these were then combined
to give the conventional real and imaginary parts of the echo atten-
uation. No zero-filling, symmetrising or filtering was required in
this dimension.
Fig. 2. The magnitude of the echo attenuation for a longitudinal displacement
encoding when qu ¼ 0. In this case s ¼ 46:3 ms. The yellow crosses show measured
data and the black dots show the interpolated data. The signal is fully attenuated at
maximum q giving a signal to noise of around 1000. (For interpretation of color
mentioned in this figure the reader is referred to the web version of the article.)
4.1.2. Motion encoding
The motion encoding is performed using a pair of gradients around

a p pulse separated by Du. To increase the reliability of the gradient
pairs, 1–3 ‘warm-up’ pulse-pairs were used, both before the main
excitation pulse and during the storage period. For short mixing times
this was not practical. For measurement of components where
motion and displacement were in the same direction, the superposi-
tion of the gradient pulses were used in the ‘warm-up’ train.

Omitting the ‘warm-up’ pulses has little effect on the magni-
tude of the echo attenuation but it does introduce an artifact of a
qu dependent phase shift. At first this is not seen as a problem since
the qu dependent phase shift is compensated as is the ‘real’ qu

dependent phase shift due to the bulk velocity. However when ten-
sors in v are to be examined this artifact needs to be minimisied,
either by using the ‘warm-up’ pulses or by comparing the phase
shift to that measured with no flow.

Eq. (16) suggests the q2 fit should be performed after the super-
position, however in practice the fitting is done beforehand. Treat-
ing the compensated and uncompensated experiments separately
in this way enables independent choice of maximum motion
encoding gradients. Typically 21–33 qu steps are used to give reli-
able low-q fits. The total time for the pair of experiments necessary
for one measurement is around 8 h for transverse encodings and
12 h for longitudinal.



a b

dc

Fig. 4. The real (a) and imaginary (b) parts of Sc
uncomp and the real (c) and imaginary

(d) parts of Scomp. These are the two data sets necessary to give DNL
zz ðZ; sÞ. In this case

s ¼ 46:3 ms. The dotted white lines in panels (a) and (b) show the displacement
pixels chosen to as an example of the q2 fitting in Fig. 5 and the line in panels (c) and
(d) show the displacement pixel used in Fig. 6. The amplitude of Scomp at the chosen
displacement pixel is not resolved in the color map above. (For interpretation of
color mentioned in this figure the reader is referred to the web version of the
article.)

16 M.W. Hunter et al. / Journal of Magnetic Resonance 204 (2010) 11–20
4.2. Post processing

The phase correction factor in Eq. (15), is found from examining
phase shift of the echo attenuation EðqD; quÞ at qD ¼ 0. The linear
term from a cubic fit is used for evaluation. The phase corrected
SðXc; quÞ from the uncompensated experiment will be denoted by
Sc

uncompðXc; quÞ.
The superposition to find DNL relies on the validity of the low-q

approximation. Previous use of this technique has been used to
investigate the VACF [10] and typically this approximation has
been held to be true if the attenuation is 0:7E0, points outside of
this range were ignored and a linear fit in q2 was made to the
remainder of the data. Tests using a fit to more attenuation showed
similar characteristics [10].

In non-local dispersion experiments, however, once each data
set is Fourier transformed giving S, the variations in SðXc; quÞ for
a b

Fig. 5. The low-q fitting to the phase corrected uncompensated encoding for DNL
zz ðZ; sÞ; s

attenuation showing the data shown in panel (b), at the displacement pixel marked by a
(dotted blue line) used to perform the fit, shown in purple, of the magnitude and phase,
which the q2

u coefficient can be estimated. (For interpretation of color mentioned in this
each displacement pixel can be quite extreme. Fig. 4 shows exam-
ples of ScompðZ; quÞ and Sc

uncompðZ; quÞ. To provide a reliable estimate
for the q2

u coefficient we need an algorithm that is relatively inde-
pendent of the resulting attenuation.

For each displacement pixel of SðZ; quÞ the low-q fit was per-
formed by first fitting an even polynomial to the magnitude and
then an odd polynomial to the phase, from these the coefficients
of q0 q1 and q2 from expressions (14) and (15) can reliably be
estimated.

To enable the algorithm to be relatively insensitive to attenua-
tion but also stable, a multi-stage process was used. Beginning
with N ¼ 8, a Nth order even polynomial was fitted to the magni-
tude. The fit was rejected if the standard error in the Nth order
term was greater that the magnitude of the Nth order term. A
(N � 2)th order fit was then tested under the same criteria until
a fit to the magnitude is found. This algorithm will typically use
a 6th order fit for the qu data with large attenuations
ð� 0:2SðXc; qu ¼ 0ÞÞ, and usually will not false fit a higher order
polynomial to noise. Once the magnitude fit has been found, this
is used to estimate the q value, qa that gives an attenuation of
0:7E0, allowing the definition of a weight function

wt ¼ 1

1þ exp � A
qa
ðqþ qaÞ

� �� �
1þ exp A

qa
ðq� qaÞ

� �� � ð19Þ

which is essentially a broadened hat function where the factor A,
typically 10, determines the width of the broadening. The same
polynomial fit is then performed with the weight function, thus
reducing the truncation error of the fit and determining the points
that we consider to fulfill the low-q approximation. If the point qa

can not be estimated, no weight function is used. This is typically
the case for low attenuation in the qu direction of SðX; quÞ and would
usually result in a low order polynomial fit.

The qu dependent phase is fitted in a similar a fashion. Using the
weight function determined above, beginning with a fifth order
odd polynomial until an acceptable fit is found. This phase shift
is significant in the uncompensated experiment and is zero within
experimental artifacts for the compensated experiment, neverthe-
less the same algorithm is used to perform a fit, usually resulting in
a linear fit with a small qu dependent term. With the two polyno-
mial fits, the curvature of the real data around qu ¼ 0 can be deter-
mined, with an estimate of the error.

Figs. 5 and 6 show examples of the fitting algorithm for the
uncompensated and compensated experiments respectively. The
uncompensated example is for a displacement near the average
where signal to noise is excellent. The qu dependent phase shift
can clearly be seen in panels (c) and (d). The complex polynomial
c d

¼ 46:3 ms. The full data set is shown in Fig. 4(a) and (b). The magnitude of the qu

black cross on the propagator in panel (a). Panel (b) also shows the weight function
panels (b) and (c) respectively. Panel (d) shows the complete fit to the qu data from
figure the reader is referred to the web version of the article.)



a b c d

Fig. 6. The low-q fitting to the compensated encoding for DNL
zz ðZ; sÞ;s ¼ 46:3 ms. The full data set is shown in Fig. 4(c) and (d). The magnitude of the qu attenuation showing

the data shown in panel (b), at the displacement pixel marked by a black cross on the propagator in panel (a). In this example the displacement is large giving poor signal to
noise. Panel (b) also shows the weight function (dotted blue line) used to perform the fit, shown in purple, of the magnitude and phase, panels (b) and (c) respectively. Panel
(d) shows the complete fit to the qu data from which the q2

u coefficient can be estimated. Clearly the weight function prevents an accurate fit to the complete data but still
provides a reliable fit to the data around qu ¼ 0. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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fit to the data in panel (d) allows the coefficients of q and q2 to be
determined. In this case the fit to the phase was a 5th order odd
polynomial and to the magnitude was a fourth order even polyno-
mial. The compensated example in Fig. 6 is for a large displace-
ment, such that the signal to noise is poor. In this example the
proportion of particles moving this distance is 0.02%. The weight
function largely ignores the points at large qu but the fit in panel
(d) still shows good agreement around qu ¼ 0. The magnitude
was fitted with a 6th order polynomial and the phase was fitted
with a linear polynomial.

Once the fitting has been performed for each displacement pixel
the superposition can be performed. Fig. 7 continues with our
example of DNL

zz ðZ; sÞ. In this case the differences between the two
a

b

Fig. 7. The resulting fits from Sun and Sc
comp , panel (a), superposed to give DNL

zz ðZ; sÞ,
panel (b). In this instance the difference between the uncompensated and
compensated fit is large, giving small error bars.
encoding is relatively large, thus giving small error bars. The need
for noise insensitive, robust algorithm is highlighted in other cases,
such as in the superposition required for the encoding describing
transverse displacement and velocity correlations, DNL

xx ðX; sÞ for
s ¼ sv . Fig. 8 shows a very small difference between the fitted data
sets.

A superposition can also be made to extract various other
tensors. These terms do not contain any information correlat-
ing velocities in space and time, but do give structure and
temporal information to the first and second moments huzi
and hu2

z i. The phase correction can also be omitted, giving ten-
sors in vz rather than uz. The tensors available from the exper-
iment performed to extract DNL

zz ðZ; sÞ are shown in Fig. 9, and
summerised in Table 2.
a

b

Fig. 8. The encoding for the fully transverse term DNL
xx ðX;sÞ at 46.3 ms shows the

small difference between the fits to the q2 data.



Table 2
A table showing all of the displacement resolved quantities available from a pair of
experiments with the initial motion encoding in the direction a, final motion
encoding in the direction b and displacement encoding in the direction c. Not all of
these quantities will be non-zero. The measured quantities for a fully longitudinal
encoding are shown in Fig. 9 panels (c–i).

Description Quantity

Propagator hPðXc; sÞi
Non-local dispersion tensor DNL

abðXc; sÞ
Non-local dispersion in v hvað0ÞPðXc; sÞvbðsÞi
First moment of velocity huaPðXc; sÞi; hPðXc; sÞubi
First moment in v hvaPðXc; sÞi; hPðXc; sÞvbi
Second moment of velocity 1=2ðhu2

aPðXc; sÞi þ hPðXc ; sÞu2
biÞ

Second moment in v 1=2ðhv2
aPðXc; sÞi þ hPðXc; sÞv2

biÞ
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4.3. Echo attenuation simulation

In order to test our experimental methodology and the associ-
ated data analysis protocols, we have carried out direct numerical
calculations of the relevant dispersion tensors using a lattice-Boltz-
mann/Monte Carlo simulation, and then used the simulated tracer
displacements to generate echo signals appropriate to the compen-
sated and uncompensated double PGSE NMR experiments. We then
process these simulated NMR data using the methods outlined
above and compare the results with the directly computed tensor
elements.

The simulation consists of three components, the bead pack
generator, the lattice-Boltzmann (LB) flow generator, and the vir-
tual tracer particle simulation component. These components are
a b c

d e f

g h i

Fig. 9. A summary of the additional data from the two experiments necessary for DNL
zz ðZ; sÞ. Panel (a) shows the magnitude of the attenuation from the compensated and

uncompensated double PGSE, the difference in the two is indicative of a positive velocity auto correlation function. Panel (b) shows the magnitude of the echo attenuation for
displacement encoding for each experiment. Panel (c) shows the two identical propagators. Panel (d) gives DNL

zz ðZ; sÞ, for s ¼ 46:3 ms. Panel (e) shows the non-local dispersion
tensor in v rather than u. The further tensors which are able to be extracted are shown in panels (f) and (g) for the first moment resolved by displacement, and panels (h) and
(i) give the second moment resolved in displacement.
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combined in order to build a suitable beadpack, model the flow
through it, and then model the motions of virtual tracer particles
through that flow field. The code provides a way of statistically
measuring the tensors we are interested in. The results between
the simulated non-local dispersion in a algorithm-generated bead-
pack compare well with experimental measurements of a random
bead pack [25] although large differences in porosities between
our simulated beadpacks ð� 0:7Þ and experimental beadpacks
ð� 0:4Þ preclude exact agreement. The simulated propagator of
Fig. 6(c) clearly shows more slower moving particles than the
experimental propagator of Fig. 9(c). These effects, and details of
the simulation are discussed further in [25].

Statistical calculation of the non-local dispersion tensor is per-
formed by calculating the contribution to the velocity auto correla-
a b

d e

g h

Fig. 10. A set of simulated tracer particles were used to statistically calculate all the tens
encoding is parallel to the flow, panels (c–i). The velocity can be measured either from th
encoding time ‘Statistical ðDuÞ’. The same set of tracer particles were used to generate an
text. Panels (a) and (b) show the attenuation from the double-PGSE encoding and th
‘Simulated E’ in panels (c–i). The agreement is excellent.
tion function from each tracer particle and putting this value in a
bin, depending on how far the tracer particle has moved. The mea-
surement of initial and final velocity of each tracer particle can be
done two ways. First, using the particles instantaneous velocity as
given by its position in the local velocity field and second, by using
an average velocity over some finite encoding time. The latter is
similar to the experimental method where the velocity encoding
is performed using a duration of Du. In Fig. 10, panels (d–i) the ten-
sors calculated using the instantaneous velocity are labelled as
‘Statistical ðvÞ’ and the tensors calculated using a finite encoding
time are labelled as ‘Statistical ðDuÞ’.

Generating the expected echo attenuation function is easily per-
formed using the tracers in the simulation. Each particle begins the
simulation with zero phase, a q and r dependant phase shift being
c

f

i

ors that can be measured from an experiment where the motion and displacement
e instantaneous local velocity field, ‘Statistical ðvÞ’, or as in experiment, over a finite
echo attenuation function which was then processed in the manner described in the
e displacement encoding. These tensors resulting from this analysis are labelled
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added for all gradient pulses (see Fig. 1). As in the actual experi-
ments, these phase shifts are summed over the ensemble to give
an attenuation, the process being repeated for all desired values
of qu and qD.

The procedure outlined enables verification of the interpolation
in qD, the q2 fitting in the qu dimension, the phase correction pro-
cess and the validity of the superposition. The duration of each gra-
dient pulse d is not included in the simulation. Values for qu and q
are chosen to be similar to experiments. The effect of the finite
encoding time, Du, for velocity is also included in the echo attenu-
ation simulation, as shown above this can also be investigated with
statistical calculations. In general the simulation noise due to the
low number of tracer particles is larger than experimental noise.
Nevertheless, a small amount of gaussian noise is added to the sim-
ulated echo-attenuation before processing. The tensors calculated
in this way are labelled in Fig. 10 as ‘Simulated E’. Overall the
agreement between the simulated echo attenuation and the statis-
tical calculation is excellent. Small discrepancies can be seen due to
the approximation of the instantaneous velocity over the period
Du, this effect is highlighted by the particles in the term
hv2

z PðZ; sÞi (see Fig. 6(i)) by the particles with no net displacement.

5. Conclusion

Measurement of the non-local dispersion tensor requires a pair
of two-dimensional pulse sequences, each involving a single-PGSE
component to measure displacements and hence correlation infor-
mation, as well as a double-PGSE component to measure velocities.
Data analysis involves a superposition of compensated and phase
corrected uncompensated double-PGSE signals. This signal com-
parison often involves a small difference, requiring a consistent
signal and hence a means of producing a stable flow. In the dou-
ble-PGSE dimension a low-q analysis is performed. An algorithm
for reliably fitting data around q ¼ 0 for a wide range of attenua-
tions is essential.

Components of the non-local dispersion tensor have been
shown to be able to be measured with PGSE NMR. The robustness
of our experimental protocols have been tested using simulations.
Statistically calculated tensor components obtained directly from
tracer migration information in the simulation are compared with
those calculated by applying our data analysis protocols to simu-
lated echo attenuation data also obtained from the tracer informa-
tion. Excellent agreement is found, thus further verifying our pulse
sequence and processing methodology. The superposition required
is also shown to be able to recover other non-local tensors, giving
further information about the first and second moments of dis-
placement. Full details of a complete set of non-local components
are presented elsewhere.
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